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As & Geologlcal wonderland
Oldest rocks: Canada, Greenland, Western Australia:
most accessible locality!

=In Japan, no rock of this era,

Economic Ores: Gold, Diamond, Platinum etc,

Gondwana homeland of continental drift

Oldest magma intrusion ‘Bushveld igneous intrusion

Meteor impacts Crater

Banded Iron Formation(BIF)
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Global distribution of Archean
rocks in modern continents,
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Why recently is the early earth

" so revealed.
After 1990’ s: A radiometric dating tool is

developed: "SHRIMP, Sensitive high-resolution ion
microprobe” ->20 um Zircon
Also isotope ratio geochemical techniques are
advanced: 146Sm-142Nd: 18ZHf- 182ly: 14ZNd / 144Nd,
182\ / 184} - > use for evolution of early earfhmn
crust and mantle system .
<Applying Mass Spectrometry>
A new window is opened for
the early earth!
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tarlv Earth (Part 1) Hadean eon
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Forming of Earth 4.66Ga
Giant Impact (the birth of Moon) 4.5Ga




Supporhng ewdence mcludes(mkl)

i) Earth's spin and the Moon's orbit have similar orientations,

ii) Moon samples indicate that the Moon once had a molten surface.
iii) The Moon has a relatively small iron core.

iv) The Moon has a lower density than Earth,
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Wildé et.al.. 2001 Natur

44Ga Zircon
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U, Pb rich

Linewever & Norman, 2008




A cool early Earth

John W. Valley*
William H. Peck*
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Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin 53706, USA
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Fig. 2. After the sterilizing impact that formed the Moon about 90420 Myr
after the formation of the solar system (Halliday 2008), a heavy but decreasing
and stochastic bombardment lasted for a few hundred million years probably
frustrated the origin of life on Earth. Eventually, the molecular evolution that
led to life as we know it, was able to squeeze through the thermal bottlenecks
produced by impacts (however see Abraomov & Mojzsis 2008a.b). Figure
from Davies & Lineweaver 2005,




Hadean Earth (4.0 Ga)

Simone
Marchi

H ad‘ an E a rt h — g rr/"um Vitae | Publications

ca. 4 billion years ago

Senior Research Scientist

Address:

Southwest Research Institute
1050 Walnut St., Suite 300
Boulder, Colorado 80302 USA

Phone: +1 720 208 7220
Fax: +1 303 546 9687
Email: marchi [AT] boulder.swri.edu

Figure 1. An artistic conception of the early

Earth-Moon system. The Earth is pictured as

surface pummeled by large impacts, resulting i

extrusion of impact-generated deep-seated

magma onto the surface. At the same time,

distal portion of the surface could have retaine
id water. The Moon is pictured as a dry,

Dr. Simone Marchi Kindly allow me to use this gif—ﬁ@q@&ered body. The Moon is far less
http:/ /www boulder swri.edu/ marchi/ geologically active than the Eart

surface and rocks have been use alibrate
our bombardment.




L+e Havv Bombardmen+ (LHB)

{Evidence>
Moon rocks (Apollo
mission):

The ages O'F impaC',' mel+s COIIeC"'ed http:/ / public media.smithsonianmag.com/legacy blog/age
at these sites clustered between histogramJpo
about 3.8 and 4.1 Ga, The apparent
clustering of ages of these led 1o
postulation that the ages record an
intense bombardment of the Moon,
They called it the ‘lunar cataclysm’
and proposed that it represented a

dramatic increase in the rate of
bombardment of the Moon around

3.9 Ga,




Late Heavy

Bombardment part2.
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t=100 M
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Simulation: “Nice model
R Gomes et al, Nature2005
- A migration of the giant planets
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In this dynamical simulation of the late heavy bombardment, the Sun is in the
center, the colored circular rings represent the orbits of the four giant
planets, and the green dots represent the disk of planetesimals between 155
AU and 34 AU.

Each panel represents the state of the planetary system at a different time,
starting at 1=100 million years. Saturn and Jupiter migrate slowly, reaching
2:1 resonance, This scatters Neptune and Uranus. Their extreme migrations
scatter planetesimals in a short time interval--a cataclysm,

“

rom
0

The four panels below correspond 1o four different snapshots taken f
the simulations. From left+ 1o right: The beginning of planetary.
‘Mvr) iuct before *he beainnina of the ccat¥erina (819 Mvr) iuct after




Early Earth (Part 2) Archean eon

Sout rical

First life? 37-35 Ga
Banded Iron Formation (BIF) 3.8 0 1.9 Ga
Free Oxyogen 25-24 Ga




Barberton Geological Map
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Moodies Group (3.2Gy) shallow marine tidal rhythmites

~South Africa 2010 _____
At Barberton
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Williams 2000: Australia 0.6Ga




38, 1/ REVIEWS OF GEOPHYSICS

Williams 2000: Australia 0.66a

Williams: EARTH’'S PRECAMBRIAN ROTATION » 43
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tide-generated
bedforms

\ Potential deposition .
L. of neap-spring cycles .
- indistal seilting

Figure 5. Envisaged environment of deposition for the E
a hypothetical ebb tidal delta adapted from Imperato et al. [
tidal inlet, where fine-grained sediment is entrained by ebb t
via the main ebb channel to deeper water offshore. There tt
cycles of thin, graded laminae mostly of sand and silt (show
the neap-spring cycles become progressively more abbreviat
into marine shelf mud. Where protected from wave acti
deposition and preservation of long rhythmite records. Ti
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the nermiscion of the International Union of Geolooical S

— ' b R — S’

annual maximum
10 ~
b
5 a
ol . A . . .
200 250 300 350
15— T T T T T — ™
E _annual maximum
= 4
]
2 .
= .
|_
0 ] 1 1 1 1 ' L L acnat
15 700 750 800 - 850
_-annual maximum
10
5 M p 7
r
0 1 1 1 1 1 AL 1 L
1200 1250 1300 1350
Neap-spring cycles

Figure 9. Three extracts from the Elatina paleotidal record of neap-spring cycle thickness (smoothed by a
five-point filter weighted 1, 4, 6, 4, 1; neap-spring cycle number increases up the stratigraphic succession),
showing 24 first-order peaks that are equated with the nontidal annual or seasonal maximum in sea level. The
plots span the three intervals where the second-order peaks (peaks a—u), which are interpreted as reflecting
the semiannual paleotidal cycle, show minimal height (peaks c—e, j-1, and g—t); the symmetry of the annual
peaks tends to be greatest at these places. Over the 60-year record, a period of 19.5 £ (.5 years is revealed
by variation in the height of the semiannual peaks (see Figure 13a), as measured from the base of the
preceding trough to the top of the peak or to the midpoint between rare twin peaks (peaks i and j).
Neap-spring cycle thickness shows a gradual decrease for cycles 12001325 and abrupt increases at cycles 250
and 1325; these nonperiodic changes evidently reflect sedimentary processes on the tidal delta such as a
gradual blocking of the main ebb channel followed by channel avulsion.
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Verify the Giant Impact Theory
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In the Archean eon,
Moon was more closer
to earth, s
So, these periods we

shorter than today.
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Moodies Group (3.2Gy) Analysis of tidal rhythmites

N

iz (18

Hy

-

Foreset Thickness (mm)
g |

[}
-
-

Foreset Number

25

N
o

[}

Foreset Thickness (mm)

Foreset Number

Figure 3. A: Traverse 2—all data. Histogram of sandstone foreset bundle
thicknesses plotted against foreset number for traverse two through
cross-bed set shown in Figure 2. Note variation in thickness of sand-
stone foresets and common presence of thick-thin pairs of foresets.
B: Traverse 2—subordinates removed. Histogram of inferred dominant-
tide foreset bundle thicknesses plotted against foreset number for tra-
verse two through cross-bed set shown in Figure 2. Inferred subordinate
flood-tide laminations were removed visually from data sets. Note that
interpreted neap-spring-neap cycles are 9-10 days long and that alter-
nate neap-spring-neap cycles are thicker and thinner, respectively.

GEOLOGY, September 2000
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Figure 4. Migration of sand wave in tidal system char-
acterized by strong flood current and weak ebb cur-
rent (modified after Visser, 1980). Note that most sand
is deposited on lee face of sand wave during dominant
flood stage (A), whereas only thin sand layer is de-
posited on lee face during subordinate flood stage (E).
Dominant and subordinate flood currents are typical
of semidiurnal tidal systems. During ebb stage, sand
deposition takes place only in trough of sand wave
and is preserved in form of intrasets within toesets of
cross-bed set (C). During stillstand associated with
turning of tide, clay accumulates on lee face and
within trough of sand wave and is preserved as mud-
stone drapes (B, D, F).
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Figure 1. Simplified geological map of Barberton Greenstone Belt. Heavy
arrowhead indicates location of sand-wave (sw) in Eureka syncline.
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Figure 5. A: Traverse two—all data. Power spectral plot of foreset bun-
dle thicknesses measured along traverse lwo (see Fig. 3A). B: Traverse
| plots of dominant flood-
tide foreset bundie thicknesses along traverse two (see Fig. 3B).
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Spherule sample at Barberton, South Africa (3.5-3.2Ga)

.Sample from Fi
Barberion)




Bio-mat sample at Barberton, South Africa (3.2 Ga)

. ' nature Vol 463/18 February 2010|doi:10.1038/nature08793
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Organic-walled microfossils in 3.2-billion-year-old
shallow-marine siliciclastic deposits

Emmanuelle J. Javaux', Craig P. Marshall> & Andrey Bekker®

Although the notion of an early origin and diversification of life on
Earth during the Archaean eon has received increasing support in
geochemical, sedimentological and palacontological evidence,
ambiguities and controversies persist regarding the biogenicity
and syngeneity of the record older than Late Archaean'~. Non-
biological processes are known to produce morphologies similar
to some microfossils**, and hydrothermal fluids have the potential
to produce abiotic organic compounds with depleted carbon
isotope values®, making it difficult to establish unambiguous
traces of life. Here we report the discovery of a population of large
(up to about 300 pm in diameter) carbonaceous spheroidal micro-
structures in Mesoarchaean shales and siltstones of the Moodies
Group, South Africa, the Earth’s oldest siliciclastic alluvial to tidal-
estuarine deposits’. These microstructures are interpreted as
organic-walled microfossils on the basis of petrographic and geo-
chemical evidence for their endogenicity and syngeneity, thei

the base of the Moodies Group, in interlayered laminated grey shales,
siltstones and wavy-laminated ¢ and organic-matter-rich
layers, possibly representing microbial mat structures. Flaser bedding,
small-scale cross-bedding, and mud-draped current ripples were
observed in drill core samples, polished slabs and thin sections (Sup-
plementary Fig. 2). These sedimentary structures indicate deposition
in shallow-water environments above the wave base.

The Moodies Group is the uppermost of three stratigraphic units
that comprise the Swaziland Supergroup in the BGB (Supplementary
Fig. 1b). It consists of an up to 3.7-km-thick succession of alluvial to
shallow-marine sandstones w bordinate conglomerates and mud-
stones, as well asiron formation and volcanic rocks'®. Deposition of the
Moodies Group began shortly after 3,226 = 1 and 3,222 +10/—4 Myr
ago (age of an ignimbrite and porphyritic intrusion, respectively, at the
top of the underlying Fig Tree Group''*) but before 3,207 = 2 Myrago
(age of a dacitic dyke cross-cutting the basal part of the Moodies
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One scene, at the Kruger national park, South Africa

-We enjoyed the game drive in the Kruger National Park
. qu driver opened the both side doors to view and made us to take picture
easily- - -,
« Unfortunately we came across a patrol car, we got stopped.
- Two young black police men walked to our car, One police man said to our
driver Dr, Dion, ~ You commit a traffic wolaﬂon The rule prohibit driving car
with the door open, Opening the door is very dangerous, Because the wild
animals running into the car!

- Then we all asked 1o the police "Please forgive our violation, Could you just
le+ him off this one time?” o
- 0f course their answer was "NO!" . Our driver had ticketed.
- However, at that time | was deeply moved this sight! ----- .

Question:
Why was | deeply
moved at that time?
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Gold deposit 3.0Ga
Chromium and Platinum: Bushveld Igneous Complex (BIC) 2.0Ga

Vredefort impact crater 2.0Ga
Kimberlite




